Transformations of matrix structures work again
نویسندگان
چکیده
منابع مشابه
Transformations of Matrix Structures Work Again II ∗
Matrices with the structures of Toeplitz, Hankel, Vandermonde and Cauchy types are omnipresent in modern computations in Sciences, Engineering and Signal and Image Processing. The four matrix classes have distinct features, but in [P90] we showed that Vandermonde and Hankel multipliers transform all these structures into each other and proposed to employ this property in order to extend any suc...
متن کاملTransformations of Matrix Structures Work Again
In [P90] we proposed to employ Vandermonde and Hankel multipliers to transform into each other the matrix structures of Toeplitz, Hankel, Vandermonde and Cauchy types as a means of extending any successful algorithm for the inversion of matrices having one of these structures to inverting the matrices with the structures of the three other types. Surprising power of this approach has been demon...
متن کاملTR-2013010: Transformations of Matrix Structures Work Again II
Matrices with the structures of Toeplitz, Hankel, Vandermonde and Cauchy types are omnipresent in modern computations in Sciences, Engineering and Signal and Image Processing. The four matrix classes have distinct features, but in [P90] we showed that Vandermonde and Hankel multipliers transform all these structures into each other and proposed to employ this property in order to extend any suc...
متن کاملTR-2013004: Transformations of Matrix Structures Work Again
In [P90] we proposed to employ Vandermonde and Hankel multipliers to transform into each other the matrix structures of Toeplitz, Hankel, Vandermonde and Cauchy types as a means of extending any successful algorithm for the inversion of matrices having one of these structures to inverting the matrices with the structures of the three other types. Surprising power of this approach has been demon...
متن کاملPolynomial Evaluation and Interpolation and Transformations of Matrix Structures
Multipoint polynomial evaluation and interpolation are fundamental for modern numerical and symbolic computing. The known algorithms solve both problems over any field of constants in nearly linear arithmetic time, but the cost grows to quadratic for numerical solution. We decrease this cost dramatically and for a large class of inputs yield nearly linear time as well. We first restate our task...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2015
ISSN: 0024-3795
DOI: 10.1016/j.laa.2014.09.004